ICERM Lecture 2 (geodesic planes in ∞-vol hyp molds)

Hee Oh
(Yale University)

$$
\text { May } 16,2023
$$

$$
G=P S L_{2} \mathbb{C}=I \text { som }^{+}\left(\mathbb{H}^{3}\right)
$$

$$
F\left(H^{3}\right) \Leftrightarrow P S L_{2} \mathbb{C} \quad A=\left\{\left.a_{t}=\binom{e^{t / 2}}{e^{-t / t_{2}}} \right\rvert\, t \in \mathbb{R}\right\}
$$

$$
\mathbb{H}^{3} \leftrightarrow P S L_{2} C / P S \cup(2)=\left\{g \in G \mid a_{-t} g a_{t} \rightarrow e\right.
$$

as $t \rightarrow+\infty\}$
contracting horospherical subgp

$$
\begin{aligned}
& G=I_{\text {som }}{ }^{+}\left(1 H^{n}\right)=S 0^{\circ}(Q) \\
& Q\left(x_{1}, \ldots, x_{n+1}\right)=2 x_{1} x_{n+1}+\sum_{i=2}^{n} x_{i}{ }^{2} \\
& A=\left\{\left.a_{t}=\left(\begin{array}{llll}
e^{t} & & & \\
& & & \\
& & & \\
& & & e^{-t}
\end{array}\right) \right\rvert\, t \in \mathbb{R}\right\} \\
& N=\left\{\left.n_{x}=\left(\begin{array}{cccc}
1 & x & \frac{1}{2} x \cdot x^{t} \\
& 1 & \ddots & x^{t} \\
& & \ddots & 1 \\
& & & 1
\end{array}\right) \right\rvert\, x \in \mathbb{R}^{n-1}\right\} \begin{array}{l}
\cong \mathbb{R}^{n-1} \\
n_{x} \leftrightarrow x
\end{array} \\
& =\left\{g \in G \mid a_{-t} g a_{t} \rightarrow e \quad \text { as } t \rightarrow+\infty\right\}
\end{aligned}
$$

contracting horospherical subgp. (maximal uniptent

$$
e^{t}=\infty
$$

For $2 \leqslant k \leqslant n$,

$$
\begin{aligned}
& U_{k} \simeq \mathbb{R}^{k-1}\left\langle N \simeq \mathbb{R}^{n-1}\right. \\
& H\left(U_{k}\right)=\left\langle U_{k}, U_{k}^{t}\right\rangle \simeq S 0^{\circ}(k, 1)
\end{aligned}
$$

Any conn. subgp of G generated by unipotents is conjugate

$$
\text { to } \begin{cases}U_{k} & 2 \leq k \leq n \\ H\left(U_{k}\right)\end{cases}
$$

The (McMullen-Mohammadi-O. $n=3$, Lee -0 $\quad n \geq 4$)
Let $\Gamma \backslash H^{n}$ have Fuchsian ends

$$
\begin{aligned}
& \Omega=R F M=\left\{[g] \epsilon G \mid g^{ \pm} \in \Lambda\right\} \\
& \forall x \in \Omega, \overline{x W} \cap \Omega=x L \cap \Omega
\end{aligned}
$$

for some $W<L<G$
Moreover,

$$
\begin{aligned}
& \overline{x H\left(U_{k}\right)}=x H\left(u_{m}\right) C \cap R F_{t} M \cdot H\left(U_{k}\right) \\
& \text { where } R F_{+} M=\left\{[g] \in \frac{G}{\Gamma}\left(g^{+} \in \cap\right\}\right.
\end{aligned}
$$

Induction:
either $\overline{x H\left(U_{k}\right)}=x H\left(U_{k}\right) C$

$$
\begin{array}{r}
C \subset C_{G}\left(H\left(U_{k}\right)\right) \\
\simeq \operatorname{SO}(n-k)
\end{array}
$$

$$
\text { or } \overline{x H\left(U_{k}\right)} \supset \overline{y U_{m}} \supset y H\left(U_{m}\right)
$$

\rightarrow Need to understand
N-orbit closures
Thu (Furstenberg, Hedlund, Veech) TCG copt lattice

- N-action on $\frac{G}{\Gamma}$ is minimal
- N-action on $\frac{G}{\Gamma}$ is uniquely ergodic the G-inv measure on $\frac{G}{\Gamma}$ is the only N-inv measure.

This can be deduced from mixing of a_{t}-action, iii, the frame flow on $F(M)=\Gamma$
The (Howe-Moore) $\operatorname{vol}\left(\frac{G}{\Gamma}\right)=1$
$\forall f_{1}, f_{2} \in C_{c}\left(\frac{G}{\Gamma}\right)$, as $|t| \rightarrow \infty$

$$
\int_{\Gamma} f_{1}\left(x a_{t}\right) f_{2}(x) d x \rightarrow \int f_{1} d x \cdot \int f_{2} d x
$$

To show $x N \cap \theta \neq \phi \quad \forall$ open $\theta \subset \frac{G}{\Gamma}$,

$$
\begin{gathered}
E T S \quad x N G_{\varepsilon} \cap \theta \neq \phi \\
P^{+}:=\left(\begin{array}{c}
* \\
* \\
*
\end{array}\right) \quad a_{-t} P_{\varepsilon}^{+} a_{t} \supset P_{\varepsilon}^{+} t \geqslant 0 \\
\left.x N G_{\varepsilon} \supset x\left(a_{t} N_{1} a_{-t}\right)\right)_{\varepsilon}^{+} \supset\left(x a_{t}\right) N_{1} P_{\varepsilon}^{+} a_{-t} \supset y G_{\varepsilon} a_{-t} \\
G_{\varepsilon}=N_{\varepsilon} P_{\varepsilon}^{+} \\
x N G_{\varepsilon} \cap \theta>\quad y G_{\varepsilon} a_{-t} \cap \theta, \neq \phi \\
\text { by Mixing }
\end{gathered}
$$

Γ convex copt (or geom. finite)
Two important geometric measures on $\frac{G}{\Gamma}$
Sullivan $0 \in \mathbb{H}^{n}$
$\exists!\Gamma$-conformal measure on Λ of $\operatorname{dim} \delta=\delta_{\Gamma}$

$$
\frac{d \gamma_{k} v_{0}}{d v_{0}}(\xi)=e^{-\delta \beta_{\xi}(\gamma 0,0)}
$$

patterson-Sullivan
measure
$\lim _{t \rightarrow \infty} d\left(\gamma 0, \xi_{t}\right)-d\left(0, \xi_{t}\right)$
Sullivan $V_{0}=\delta$-dim'l H'ff measure on Λ.

$$
w\left\{\begin{array}{l}
B M S \\
B R
\end{array} \text { measures on } \frac{G}{\Gamma}\right.
$$

Hoof parametrization

$$
\begin{aligned}
& \stackrel{g}{g^{+}} g^{2} \\
& T^{\prime}\left(\mathbb{H}^{n}\right)=G / S O(n-1) \simeq \partial g^{+}, g^{-}, \underset{S}{\left.\beta_{5}^{\prime \prime}(0, g)\right)} \times \partial \mathbb{H}^{n} \times \mathbb{R} \\
& d m^{B M S}[g]=e^{\delta \beta_{g}+(0,90)+\delta\left(g^{-(0, g)}\right.} d V_{0}\left(g^{+}\right) d v_{0}\left(g^{-}\right) d S
\end{aligned}
$$

IR left Γ-inv a right A-inv measure

$$
\begin{aligned}
\left.m^{B M S} \text { on } \frac{G}{\Gamma} \quad \begin{array}{rl}
\text { supp }^{\text {BM }} & =\left\{g^{ \pm} \in \Lambda\right\} \\
& =R F M=\Omega
\end{array}\right) .
\end{aligned}
$$

$$
d m^{B R}[g]=e^{S r_{g}(+(, 9))+(n-1) B_{g}-(9,9)} d v_{0}\left(g^{+}\right) d m_{0}^{L}\left(g^{-}\right) d s
$$

(2)ㅜํ) left r-inv \& right N-ins measure

$$
\begin{aligned}
& m^{B R} \text { on } \frac{G}{\Gamma} \\
& \text { supp } m^{B R}=\left\{g^{+} \in \Lambda\right\} \\
& =R F_{+} M=\varepsilon
\end{aligned}
$$

Thy Γ geom. finite \& $\Gamma<S 0^{\circ}(n, 1)$ Z. dense

- $m^{\text {BMS }}$ is A-ergodic (Sullivan, $\begin{gathered}\text { Winter) }\end{gathered}$ \& measure of max. entropy Winter)
- $m^{\text {BIS }}$ is mixing (Babillot, $\left.\begin{array}{c}\text { Winter }\end{array}\right)$

Using the BMS-mixing, winter proved:
Thy (Burger, Roblin, Winter)
Γ convex copt (geom .finite)

- N-action on $R F_{t} M=\varepsilon$ is minimal
- N-action on $R F_{f} M$ is uniquely-ergodic,
$m^{B R}$ is the uniq N-inv measure on RF _M
In particular, $m^{B R}$ is N-ergodic.
$\mathbb{R}^{k-1} \simeq U \notin N \simeq \mathbb{R}^{n-1}$ conn. unipotent subgp $m^{B R}$ is not U-ergodic in general

The (Mohammadi-O. Maucourant-Schapira)

- If $\delta>\operatorname{codim}_{N} U=(n-k), \quad m^{B R}$ is U-ergodic are U-orbits are dense in $R F_{t} M$
- If $\delta<\cos _{0}-\operatorname{dim}_{N}(U)=(n-k)$, $m^{B R}$ is totally dissipative.
a.e U-orbits are proper immersion of $U \simeq \mathbb{R}^{k-1}$
$M=\frac{\sqrt{H} H^{n}}{\Gamma} \quad$ Convex Copt with Fuchsian ends

$$
\Rightarrow \delta>n-2
$$

Corollary For any conn unit subgp $U<N$

$$
\text { (even } \operatorname{dim} U=1 \text {), }
$$

a.e U-orbits are dense in $R F_{f} M$.

$$
\begin{aligned}
& \text { For } m^{B M S} \text { a.e } x \in \frac{G}{\Gamma,} \times S O^{\circ}(k, 1) \text { is } \\
& \text { dense in } R F_{t} M \cdot S O(k, 1)
\end{aligned} \begin{array}{r}
\text { For } m^{B R} \text { a.e } x \in \frac{G,}{\Gamma,} \begin{array}{r}
x S^{\circ}(k, 1) \text { is dense } \\
\text { in } R F_{t} M \cdot S O(k, 1)
\end{array}
\end{array}
$$

Measure - theoretic analogue of MMO \& LO the?

Conj $U<N$
Any U-inv erg measure on $R F_{+} M$
is of the form

for some closed $x H(\hat{u}) C$ with $u \subset \hat{U}$

Thank You!

